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A QUASI-OPTIMAL ERROR ESTIMATE FOR A DISCRETE 
SINGULARLY PERTURBED APPROXIMATION TO THE 

PRESCRIBED CURVATURE PROBLEM 

MAURIZIO PAOLINI 

ABSTRACT. Solutions of the so-called prescribed curvature problem 

minACQ PQ(A) - fA g(x), g being the curvature field, are approximated via a 
singularly perturbed elliptic PDE of bistable type. For nondegenerate relative 
minimizers A CC Q we prove an O(12 log 12) error estimate (where e stands 
for the perturbation parameter), and show that this estimate is quasi-optimal. 
The proof is based on the construction of accurate barriers suggested by formal 
asymptotics. This analysis is next extended to a finite element discretization 
of the PDE to prove the same error estimate for discrete minima. 

1. INTRODUCTION 

Given an open bounded domain Q in R' with Lipschitz continuous boundary 
and a curvature field g E L? (Q), we address the solution of the so-called prescribed 
curvature problem, which consists of minimizing the functional 

(1.1) 5(A) = PQ(A) - g(x) dx, AC Q. 

Here, 'PO(A) denotes the perimeter in Q of the Caccioppoli set' A C Q, i.e., the 
(nr- 1)-dimensional Hausdorff measure of &*AnQ, where &*A is the reduced bound- 
ary and coincides with OA for regular sets [17]. Problems involving a surface energy 
together with a volume term arise in many fields, e.g. in phase transition problems, 
capillarity, minimal surfaces [1], [18], [27]. 

Any absolute or relative minimizer A to 9 is known to verify the condition that 
the sum of the principal curvatures at any point x E OA n Q equals g(x) (wherever 
g is continuous) and that the interface OA meets the boundary OQ orthogonally. 

Given c > 0, the functional 5 in (1.1) can be approximated by the more regular 
relaxed functional [25] 

(1.2) Se(v) = c Vv2dx + - T(v) dx - 2 /gv dx, Vv E IH(Q), 

in the sense of De Giorgi's I-convergence [13] as c -+ 0. Here, T(t) = (1 -t2)2 
is a double-well potential which penalizes values of v other than ?1 and co = 
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f1 ds. It follows that any sequence of absolute minimizers ue of Fe con- 
verges in L1(Q), up to a subsequence, to a function u E BV(Q; {-1, 1}) such that 
the set A = {x E Q: u(x) = 1} is an absolute minimizer of g. 

The first result of this paper is an essentially 0(C2) quasi-optimal interface error 
estimate for minimizers of h, that reads as follows. Let A cc Q be an absolute or 
relative minimizer of 9 with strictly positive principal eigenvalue A1 of the second 
variation of 5 (A is a nondegenerate minimizer). Then there exist a relative mini- 
mizer uE of F,, a positive constant C depending on Q, g, A1, and a threshold value co 
(possibly depending also on A and C) such that, setting Se = {X E Q: uE(x) = 0} 
one has 

distH(OA,ZE) < Ce21lg el2, Ve < CO. 

Here, distH denotes the Hausdorff distance between sets. 
The Euler-Lagrange equation associated with h, turns out to be a singularly 

perturbed nonlinear elliptic PDE, which can be solved by finite elements techniques 
[4], [5]. We then prove that the 0 (C21 loge C 2) interface error estimate remains valid 
also for solutions of these discrete versions of the elliptic PDE, provided the mesh 
size h decreases with C at least as h = 0 (C5/2). The discrete problem introduced 
here actually differs from those presented in [4], [5] in the absence of mass lumping 
in the potential term. Mass lumping in that term can however be taken into account 
at the cost of a much stronger requirement, on the size of h with respect to C. Results 
in the same spirit have been recently obtained by Dziuk and Hutchinson [15] for a 
discrete version of the Plateau problem using a front-tracking approach. 

Solutions of the prescribed curvature problem can also be obtained by considering 
the stationary limit as t -) +oo of the evolutionary reaction-diffusion equation 
associated with the Euler-Lagrange equation, 

(1.3) Ut-AU+ 2 t (u);= 29 

This so-called Allen-Cahn equation in fact approximates, by its zero level-set, the 
evolution of a surface moving with normal velocity given by the local mean curvature 
plus the forcing term g with an error of order 0(C21 log C12) [3], [28], [291, [30], [31], 
[32], [33]. Equation (1.3) has been thoroughly investigated theoretically in the 
literature; see, e.g., [1], [2], [7], [8], [9], [12], [14], [16], [23] and the references cited 
therein. 

The outline of the paper is as follows. In ??2 and 3 we fix some notation and 
introduce the prescribed curvature problem. The first and second variation of the 
energy functional are presented in ?4 in order to introduce the concept of nonde- 
generacy of relative minimizers. The comparison lemma of ?5 is the main tool to 
establish existence of approximating solutions. Construction of appropriate barri- 
ers, based on the formal asymptotics sketched in ?6, is accomplished in ?7. Based 
on this construction, we obtain the error estimate for the relaxed functional of ?8; 
the optimality of this estimate is then shown in ?9. A similar error estimate can be 
obtained for a discrete version of the energy functional, as shown in ?10, following 
the same conceptual path as for the continuous counterpart. We finish the paper 
with some remarks and conclusions. 
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2. NOTATIONS AND ASSUMPTIONS 

Let Q C RT be a bounded open domain with Lipschitz continuous boundary, 
and let A cc Q with smooth boundary E = OA; we require that A lie locally 
on one side of E and we suppose for definiteness that A is an open subset of Q. 
We require E E C2 in order to have continuous principal curvatures si, ..., 

additional regularity of E is implicitly required by the assumption (2.1) below. 
The signed distance function with respect to A is defined by 

d(x) = dist(x, Rn \ A) - dist(x, A) 

and satisfies Id(x) = dist(x, E). 
Given D > 0, we define the tubular neighborhood 

T= {x E Q: Id(x)I < D}. 

In view of the C2 regularity of E and the compact embedding A cc Q, we can 
choose D so small that the signed distance d is smooth over T; it turns out that 
the projection s(x) of any x E T onto E, defined by 

dist(x,s(x))= Id(x)= , 

is uniquely determined. Theorems 8.1 and 10.2 will be proved under the following 
regularity assumptions for d and g: 

(2.1) d EW3o (T), g EW3o (Q). 

We recall the definition of the double-well potential T(t) = (1- t2)2, and we set 
+,(t)= =1'(t). 

3. THE PRESCRIBED CURVATURE PROBLEM 

Let us consider a slightly more general form for the energy functional 5 obtained 
by the addition of a boundary term. Namely, let 

TY(A) = PQ(A)- g(x) dx + J p(x) d7n1. 

Here, Htn-1 denotes the (n - 1)-dimensional Hausdorff measure and A is any Cac- 
cioppoli subset of Q. Let b-t E L' (OQ; [-1, 1]) be a weight factor for that part of 
OA lying on OQ. It is easy to check that the boundary of minimizers of F meets 
the boundary OQ at an angle given by arccos/bt [18]. 

However, in this paper we are only concerned with relative minimizers A com- 
pactly contained in Q, which are clearly not affected by changes in this boundary 
term. We therefore fix our attention to the particular choice bt = -1 and the cor- 
responding Dirichlet boundary value -1 for Fe. This choice alleviates the bound- 
ary layer of minimizers of the relaxed functional, again for compactly contained 
minimizing sets. Indeed, far outside A such minimizers are espected to assume 
approximately the value -1 + Ceg, and we have only an 0(c) discrepancy with the 
imposed boundary datum. The constant C depends on the double-well potential, 
and is actually zero with a nonregular choice of T [33], [29]. Note that the original 
functional 9 corresponds to the choice b-t = 0. 

The functional F is still relaxed by the-functional h, defined in (1.2); the only 
difference lies in the choice of the appropriate Dirichlet boundary condition, which 
depends on b-t and on the double-well potential [4], [5]. 
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We shall restrict attention in the sequel to 

(3.1) 5(A) = n-l'(0A) - g(x) dx. 

Correspondingly, we shall impose on h, a Dirichlet boundary condition by defining 

D(FE) = {v E H1(Q): vla = -1} 

and minimizing Se over the convex set D(YE). The following P-convergence result 
is well known [25]. If Fe is extended to +oo outside D(YE), then Fe P-converges to 
'2 in the L1(Q) topology, where F is defined on BV(Q; {-1, 1}) by 

Y(v) =jDvl- gv dx +j vdn-l 

and is extended to +oo outside BV(Q; {-1, 1}). Here, fA lDvl stands for the total 
variation of the BV function v [21]. In terms of relative and absolute minimizers, 
F and F are perfectly interchangeable with the position A -+ 2SA - 1, where WOA 
is the usual characteristic function of the set A. This P-convergence result implies 
that any sequence of absolute minimizers of Ye converge up to a subsequence to an 
absolute minimizer of F; however, it does not give any information on the rate of 
convergence. 

The relaxed functional Y, can be easily discretized numerically by using, e.g., 
conforming piecewise linear finite elements. The resulting discrete functional is 
shown to F-converge to 2F [4] under the essential condition h = o(c), where 
h denotes the mesh size. The sharp error estimate for the continuous relaxed 
functional Ye is a crucial step in proving the discrete interface error estimate of 
?10. 

The Euler-Lagrange equation corresponding to the minimization of YE over 
D(YE) reads as follows: 

(3.2) L(uE) = 0 in Q, uE = -1 on Q, 

where 

(3.3) L(v) = -c2Av + O(v) -cOg 

The operator L can be regarded as a mapping of D(YE) C H1 (Q) into H-1 (Q). 

4. STABILITY OF SURFACES OF PRESCRIBED CURVATURE 

We now turn our attention to the properties satisfied by a relative minimizer 
A cc Q of F defined in (3.1). We shall further suppose that the boundary Z = A 
is of class C2, so that the sum of the principal curvatures sm is well defined. Note 
that this is not a consequence of the regularity of g, at least not if the ambient 
space has dimension > 8, as the Simons cone [6], [36] example reveals. 

We shall consider the first and the second variation 6FA and 2YA of F associated 
with normal displacements of the boundary E. More precisely, let n denote the 
outward unit vector normal to E. For any test function ( E C2(Z) define 

6XF(,)= 'EF(A'4)]A=o, 8FA(,) =d ) 

8FA~, =dA2 
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where AA\ is the set whose boundary is obtained by moving any point x E Z to the 
new position x + A,(x)n(x). The set AA\ is well defined provided JAI is sufficiently 
small. A straightforward computation gives the first variation 

v$A(()= /(Km _ ) 1n-1 &FAQ~) (,K g- ~d 

which provides the usual stationarity condition 

(4.1) K;m =g onZE 

The second variation is given by 

(4.2) 8YAQ(, () = j [IV17 12 - (V9 v n + s)42] dH n-1 

where KS is the sum of the squares of the principal curvatures, and the notation VE 
denotes the tangential gradient of functions defined on . -The symmetric bilinear 
form on H1 (E) associated with the second variation (4.2) is 

62A (et)r) (Va, VSr)-((V9 * n + rz)s, 

where (,-)s denotes the L2 scalar product in E. 
The minimality of A implies 82)A (, () > 0 for any test function (. The main 

results of the paper will be proved under a more restrictive nondegeneracy condition. 

Definition 4.1. A regular subset A cc Q is a nondegenerate relative minimizer 
of ) if (4.1) holds and 62YA((, () > 0 for all ( 9 0. 

Let the linear operator L: H2 (E) - L2(E) be defined by 

62&YAQ(,r) = (L:, r)E, V7rl E H '(E), 

that is, L- = - - (Vg rn + ns)(, where Al is the Laplace-Beltrami operator 
on E associated with the metric induced by Rn. 

The eigenvalues of L satisfy A1 < A2 < ... and An +00 as n -- oo. Let 
h E H2 (E) be the eigenfunction associated with the principal eigenvalue A1, defined 
by 

(4.3) .-Ah-(Vg n + ss)h = Alh 

and satisfying [20, ?8.12], [11, p.451] 

(4.4) hmax > h(x) > hmin > 0, VxE E . 

Lemma 4.1. A subset A cc Q satisfying (4.1) is a nondegenerate minimizer if 
and only if Al >0. 

Proof. If the test function ( is normalized so that JOIL2(E) = JJhIJL2(F)-, then 
62YAQ(,() ? 62YA(h,h) = Al(h,h)E = Al 1 hl|22(E) > 0. 

Remark 4.1. The eigenfunction h > 0 satisfying property (4.4) plays an essential 
role in the construction of the subsolution, since the horizontal shift is modelled 
accordingly. Instead, the choice of a space-independent shift, as done in [3], [28], 
[31], [29], leads to a subsolution on-ly if Vg . n + nS < 0 on E. Note that this is a 
severe restriction which, in turn, implies A1 > 0 in view of (4.2). 
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5. COMPARISON LEMMA 

The main tool to establish existence of an approximating solution uE is the 
following comparison lemma. It is a variant of known similar results (see [37]). 

Lemma 5.1. Suppose that v- < v + E W2',(Q) are sub- and supersolutions to 
(3.2), that is, satisfy the inequalities L(v-) < 0 and L(v+) > 0 a.e. in Q, and also 
that v- < -1 <v on OQ. Then there exists a solution u,e W2'0(Q) of problem 
(3.2) satisfying vJ- < ue <? v+. If, in addition, there exists a positive constant C 
such that 

(5.1) L(vJ) < -C < 0 and L(v+) > C > 0, 

then ue can be chosen to be a relative minimizer of the functional Fe 

Proof. Set K = {v E H1(Q): v < v < v+,v ao = -1}. Let ue E K be an absolute 
minimizer of Fe restricted to K (which is a nonempty closed convex set), which 
exists by the direct method in Calculus of Variations [24]. Then uE satisfies the 
following variational inequality: 

(5.2) (LuE, v-uE) > ? v E K. 

FRom the regularity theory of elliptic variational inequalities it follows that u E 
W2'0(Q) [19]. Let x E Q be any regular point for v-, v+, and uE. If v-(x) < 
uE(x) < v+(x), we easily get L(uE)(x) = 0 by appropriately choosing the test 
function in (5.2). Suppose now v (x) = uE(x) < ve+(x). By definition of L, (3.3), we 
have L(uE)(x) < L(v-)(x) < 0. On the other hand, we get the opposite inequality 
L(uE)(x) > 0 by enforcing (5.2) with an appropriate choice of the test function, 
and again we obtain L(uE)(x) = 0. The remaining cases vJ-(x) < uE(x) = ve+(x), 
vJ-(x) = uE(x) = ve+(x) can be treated similarly, and we conclude that uE is a 
solution of problem (3.2). If we have the stronger conditions (5.1), assumptions 
vJ (x) = uE(x) and ve+(x) = uE(x) lead to a contradiction, and we conclude that uE 
is contained in the interior of K. LI 

6. FORMAL ASYMPTOTICS 

A formal asymptotic analysis of the singularly perturbed PDE (3.2) suggests the 
validity of an optimal quadratic error estimate between the surface of prescribed 
curvature E cc Q and the zero level-set of the relaxed solution uE of (3.2). This 
error estimate will be proved via the construction of precise barriers suggested 
by the formal asymptotics mentioned above, which however plays no role in the 
rigorous proof. 

6.1. Shape functions. We preliminarily need to define the shape functions; they 
appear in the inner expansion, and their asymptotic properties and estimates are 
crucial for the derivations in ?7. We shall recall them briefly and refer to [3] for 
details. Let the linear operator A: H12.,(R) - L(R) be defined by 

(6.1) A(= (= -0'() 

where y is the unique strictly increasing solution of y" -+(ay) = 0 satisfying -y(0) = 0 
(for the choice of the potential made in ?1 we actually have -y(y) = tanh(y)). The 
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shape functions are defined by the equations 

An = y_ co 

A461') = n', 

,At(2)=I 2)1(_Y,,l 

A4 (3) = y- / 

Since the right-hand sides (say f) satisfy the orthogonality condition fR fy' dx = 0, 
any such solution (say () actually exists and is unique if we further require ((0) = 0 
and a polynomial growth at infinity [3]. They satisfy the following properties (see 
[3, ?3.2]): 

limi7(Y) = CO ' 

(6.2) lim ((1)(y) = lim ((3)(y) = O, 
(6.2) ~~~y-++0o y-++0o 

lim (2) (y) = i (2) = :F 0c2( ) 

6.2. Inner expansion. We focus our attention here to the sole inner expansion, 
which furnishes all the important information and allows us to define the building 
blocks in devising the appropriate shape of the sub- and supersolution. 

Let y = dele, where de is the signed distance to the set SE = {uE = O}, positive 
inside. Let rE S -* ZE be a one-to-one parametrization of SE, where S is a 
reference manifold of the same topological type as SE, assumed to be uniform in c. 
We also denote by s: Q - S the projection of any x E Q onto the set e, so that 

x = rE(s(x)) - d,(x)n,(rF(s(x))), 

where nE denotes the outward unit normal vector to ZE. Setting UE (y, s) = u, (x), 
we assume the existence of asymptotic expansions for UE, rE, n,, ,, i' up to the 
appropriate order in terms of e: 

UE=Uo+Ul+e2U2+O(3), FE=Fo+JN+O(2), 

nE = no + O(E), K1 = Km +7?7 + O(2 ), KS = KS + 0(E), 

and define Eo = {ro(s) : s E S}. By substitution of UE in (3.2), and collecting all 
terms of the same order, we obtain equations for each Ui, which are solvable if and 
only if an appropriate orthogonality condition for the right-hand sides is satisfied 
(Fredholm alternative) [3], [29], [33]. In particular, it follows that m = g(ro(s(x))) 
and sm = 0, which means that the curvature of Eo must equal the forcing term 
g, as expected, so that we are indeed approximating a minimizer of F, and that 
r1 = 0, which means that the approximation is actually second-order accurate. 

The resulting expressions for Ui, i = 0, 1, 2, read 

Uo = (Y), 

(6.3) Ui = g(x)q(y), 

U2 = (92(X) - 2g'(s))c(M)(y) +92()2)() + ((s) - (3)(y), 

where for convenience we use g'(s) as a shorthand for -Vg(ro(s)) . no(ro(s)). 
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Observe that the function g in the definition of Ui is evaluated at the local 
position x = F,(s) - ynr(I`(s)) (which actually depends on e) rather than on 
Fo(s). This 0(e) change affects the subsequent definition of U2, but is essential to 
allow the subsolution constructed according to (6.3) to be extended smoothly far 
from the interface. 

6.3. Boundary layer formal asymptotics. The barrier to be constructed in 
?7 has to match the Dirichlet boundary value -1. For this purpose we need to 
devise an appropriate shape, which is again suggested by the first three terms of 
the boundary layer formal asymptotics. 

The derivation is quite similar to the case of the inner expansion at the transition 
layer, but now the FRedholm alternative does not give any orthogonality condition 
to be satisfied for the right-hand side of the equations defining the shape functions, 
because the associated homogeneous equation has trivial kernel. It is also possible 
now to give explicit definitions for the above-mentioned shape functions, which we 
give in (7.12) of ?7.3, where they are used to actually construct the lower barrier 
near 0Q. 

7. CONSTRUCTION OF A SUBSOLUTION 

Based on the eigenfunction h constructed in ?4, we define for any c > 0 on T 
the modified signed distance as follows: 

d-(x) = d(x) - clh(x)c2l log r, 
where h(x) = h(s(x)) and cl > 0 is a constant to be chosen later independent of c. 
We set 

T- = {x E T: IdJ-(x)I < 26ellogel}, 

where 6 > 3 and note that T- cc T for c sufficiently small. Since h is constant 
along normal directions, we have Vd* Vh = 0, hence 

(7.1) =Vd- 1 - 1 +c20(c4l loge 4). 

Here and throughout this section the notation f = 0(&41 log c14) stands for If I < 
C l 41 log4 for c sufficiently small, say c < 60, where C > 0 is some constant 
independent of c and of the constant c1, as well as c2 and C3 to be defined later 
on. The value 6o, instead, might depend on ci, i = 1, 2,3. Note that cio(w(E)) = 

0(w(e)), i = 1, 2, 3, where w is any positive function of c. 
Finally, the stretched variable is defined on T by 

de (x) 

As in [3], with the important difference of the definition of the modified distance 
function d- (x) and the related stretched variable y, the definition of the subsolution 
v- is based on the formal asymptotics sketched in ?6. 

Also, the existence of a boundary layer for u., owing to the Dirichlet boundary 
condition, requires appropriate consideration. 

Setting ye = 61 loge , we need to modify the shape functions _,n,((1), (2),j(3) 

outside some compact interval [-ye, y] in order to let them become constant outside 
the larger interval [-2ye, 2y]. This is a necessary step in order to unambiguously 
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extend the definition of v- to the whole Q. If 4 is any of the shape functions, 
denoting ( 10 = limY+?OO ((y), we define 

((y) if IYI < YE, 
p 
P (y) if yE?i< yI?2yE, 

1(+oO if y > 2ye, 
(_ ,0 if y < -2yEj 

where P+ are two cubic polynomials suitably chosen so as to have CeE C1(R). 
We are now ready to define v- within the tubular neighborhood T as follows: 

(7.2) VE-(X) = }YE(Y) + Eg(X)r/e(Y) + 62b(x) * te(Y) -C2631 logEI2, Vx E T 

where we used the compact vector notation tie = (f1()) (e2), (3) ) and b = (g2 _2Vd- 
vg,g2, k -2Vd* Vg); R' is the extension of r, to T, defined by K8'(x) = Ks(s(x)). 
Here, C2 is an appropriate constant to be chosen later. 

Since the modified shape functions are constant outside 7e- and in particular 
(1) = (3) = O, we can extend v- on Q \ Te- 

f , +eq0g (x)+e2 (g(x))2-c2e3I logeC 2 if de (x) <-26e1 loge , 
(7.3) vJ(x) = 6 fd()>2e o i 

* Ve z~~'EqC -lg+7 9(z) - c 010 ) 2 cE31 logE12 if de-(x) > M6EI logE 1, 

where we also exploit q7, = rcoO and -0. = . 

The two definitions agree on the common set T \ 77-. 

7.1. Subsolution on T.-. The most delicate part of this paper is to verify that 
v- is actually a subsolution on T7- with an appropriate choice of the constants 
cl, C2. Note that 

(7.4) d, dJ = O(cl logel). 

We need the following lemma; the proof can be found in [22, Theorem 3.2]. 

Lemma 7.1. Given any function w E C2(E), we can compute the Laplace-Beltra- 
mi operator A/w as follows: 

Azw(s(x)) = A(w o s)(x), Vx El 

where we endow 3 with the Riemannian metric induced by Rn. 

For x E 77- we apply Lemma 7.1 to the eigenfunction h. By Taylor expansion 
of Ah(x) about s(x) we get 

(7.5) 

/\h(x) = A/h(s(x)) + dV(Ah()) .Vd = A\h(s(x)) + 7(eI logel) Vx E 77-, 

where the constant in O(eI logEJ) involves three derivatives of h and E. 
The following relation holds in 77- [20, ?14.6]: 

Ad(x) = -im(x) - d(x)iKs(x) + O(d 2(x)). 

We can use (7.5) to express the Laplacian of the modified distance as 

Ad- = Ad-c cA\h(s)e21 loge 2 + clO(de21 logeI2) 
(7.) m - y.s - cl(hs5 ? Ah(s))E 21 jogE12 +0 (21 logE1 2). 
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The derivation, from here on, strictly follows that of [3, ?6.3]. Direct computations 
yield 

VvJ = --1& VdJ + gql VdJ + cb 'Vd- + ,ET1Vg + (24E Vb, 

where Vb acts componentwise. Using (7.1) and (2.1) to bound Vb and Ab, and 
noting that c2 o(c) = 0(cEY), we get 

Av-6211+ -- c //+?'-1+yatAd- +gq/Ad- +b. e +2ijVg Vd + 0(c). 

Hence, using (7.6), we have 

2 A- _E _ -1 - -2b _ Eg-(_ + C2gr})AdJ -2?7yVg 2 Vd + 0( () 

=-/'-Eb +) Adm _ 22b * "g22 Vg * Vd-+ + 0 

+ cic31 log El2 y'(hks + Ash(s)) + 0(cl log C12). 

Now observe that, by (4.1) and noting that Vd = Vd- +c10 (cE21 log c12), we obtain 

g(x) = g(s(x) + dVd) 

- 
" + dVd Vg+0O(d ) 

- Sm + cyVdJ Vg + clh/i21 logE12Vd* Vg + 0(621 log,612), 

where Vg(x) - (Vg)(s(x)). Since y = 0(1 log 612), it thus follows that 

(7.7) c2 g = c2g2 + 
0(6&'I log cI), 

and 

(7.8) EyyIm = yg - 2yyVd- * -c1hc3 logcl2y?Vde *Vg+ 0(c(I logVd ). 

2A Inserting (7.7) and (7.8) in the previous expression of -E /vE, we get 

-e2AV=- 2-/--g31 + c g- 2y'VdJ *Vg-cjhc3jlog j127yVdE Vg 

-c2b *e-2c2_ qjVg * VdJ- +?62g2,I + yc,2 Rs 

+cc31 logI12y (h, +Ash(s)) + 0(631 log,612). 

Using the formula 

1b(VE)- = (-YE) + fg7ge''(7E) + c2b * 

+ 1 -2g2)242"'(_YE) -c2c31 loge 12b (_Ye) + 0(63), 

we finally get that 

-E2AV- + '(Vv) _-E 2g = Je + ,Ell + 621116 + 631 log,6j2IVE + 0(j631 logE12) in T7-7 
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where, recalling the expression of b and (, 

Ie=-( ,E , - , C(0-) 

IIe = -9 [7e -nEo (-YE) + 2 --YE] 1 

2 eJ~~~22 
Ie = - b +b *Eob ((-ye)-2n/Vg * Vd+g +yry/ s + )-yy Vd Vg 

= - (,S - Vd* Vg)( (3)/ - /b'(_yE) (3) -_y-) + y-yVd (Vg - Vg) 

_(g2 2V 7g) (( (1) /- (_7E ) (1) _ 1e)-92 (If (2) //_f/(2re)li - 7 J(y 
217d~~~~~~~~~~~~~~~~ 

JVe = cgye(ThRs + A sh(s))/-C24"(yt)-ciJvyeVd * Vg = -cIAiJv'e-c 

where we also use the equality Vd- = Vd + CIO(C21 log c12) = Vd + 0(c) and 
relation (4.3) for the eigenfunction h, with Vd =-n. 

Observe now that [3] in T7 

(7.9) YE/ - (YE) = o(c261), 

7 -P (YE)' (E + ) - -= o(2=), = 2 

- ' E'( )3 Y-~E/ = E() ~I~~1 - 

- -// 0P'(_~Eg(2 - 226-1"x)) 
2E 

for any y #& ?ye. Noting that y-y,Vd. (Vg - Vg) = (9(cI log c12), we conclude from 
the previous estimates that 

Ie + CIIe + 2JJJE = o(6261-) + O (63 logc 2) in T.-. 

Since limY-?,,0b'(-yE(y)) = 0/'(?l) = 4, there exists a positive constant C3 such 
that C3y. + ob'(-ye) > 2 on R. By choosing c2 large enough and 

cl C3C2 > 
C 

Al hmin 

we have 

L( (v-) =-4E2AvJ +O(v-)-2g = -e31 log 12 (cIAIh'E +c2+C'2y) +O(1)) 

K - c|j logel c~(C3C2 ye + C2b ('y) + 0(1)) K -Cc31 log |2 < 0 

for some constant C > 0, since the constant in (9(1) does not depend on the 
constants cl, c2. Note that the constant cl, which appears in the final error estimate, 
depends in particular on the nondegeneracy of the minimizer A, given by the size 
of the positive eigenvalue A1. 

7.2. Subsolution on Q \ ,-. Suppose, for definiteness, that d- < -2681 log cj. 
From (2.1) it follows immediately that -c2Av- = O(63) and, using (6.2), we get 

f (ve ) = fb(1) + c7Roogfb(1) + c (2) 9g2 (1) c2c | log 12 f (1) 

+-, g 7oo" g (1) + (c( C) 

cOg - c2E31 log 12O' (1) + O(c3). 
2 
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Finally, 

(7.11) (re ) = - 2Avv + ) (v) A-e 2?V 9 =-C2e3 log e12 l'(1) + 0(el) 

<-Ce3 log c12 < 0, 

provided we choose C2 sufficiently large. 

7.3. Comparison with boundary datum. Unfortunately, the constructed sub- 
solution v- has boundary value given by the second line of (7.3), which is not 
comparable with the Dirichlet boundary value -1, for a general g. Unless we re- 
quire g = 0 on &Q, we are then forced to suitably modify the subsolution vJ- in a 
tubular neighborhood of &Q, and we then need appropriate regularity (W3,oo) of 

We shall denote by d the (positive) distance function of any point x E Q to the 
boundary, and by = de-1 the corresponding stretched variable. Let T. = {x E 

Q: d(x) < 26c1 loge } for some positive constant 6, which is disjoint from Te- for c 
small. The shape of v- in fe is again suggested by formal asymptotics (see ?6.3). 
Because of the matching condition with v- in the interior of Q we need to use the 
first three terms of the formal expansion. More precisely, we define, similarly to 
(7.2), 

V-(X) =-1+ eg(x)>E(y) + ?c2b. (() -C2631 logE 2, Vx E fel 

where = (kmg - 2Vg * Vd, g2),e = (-(I) (2)), and ktm refers to the curvature of 
&Q. The shape functions 7()-( 2) can be explicitly constructed and are given 
by 

2b' (1)-exp( 

mCO 
(7.12) ( (1)() exp (-o), 

~() C20//(1) [ 2 j ~ -1 
(e (Y =[(1][1 ( 3 + U) exp,, Orm 

- (expe( Uy)) 2X 

where a = (1) and exp, denotes the exponential function modified for > 
61 log cI by a cubic polinomial, as done for the "internal layer" shape functions, so 
as to vanish for y > 281 log el. 

It is clear from this definition that vJ-(x) < -1 for any x E &Q and that 
there is consistency with definition (7.3). It only remains to prove that Lv- < 
-C6310 logc2 < 0 in fe. Indeed, if we expand Lv- as we did in T,-, we find that 
the terms of order 0(1), O(e), O(e 2) essentially vanish, apart for contributions of 
order O(ce) owing to the truncation of the exponential for y > 61 log el; we remain 
with the O( 3 1 log c12) term, which has the form -c20b'(1) 631 log c12 < 0. 

7.4. The approximating solution. The previous arguments can be repeated 
to construct a supersolution v+ based on the modified distance de+(x) = d(x) + 
c1h(x)c2 log 612. 

We can now apply the Comparison Lemma 5.1 and deduce that there exists a 
relative minimum uE of T. satisfying the inequality 

v? < UE < v+ in Q. 
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8. INTERFACE ERROR ESTIMATE 

Let us denote by distH the Hausdorff distance between subsets of R', namely 

distH(E, F) = max{sup dist(x, E), sup dist(x, F)}. 
xEF xEE 

Note that distH satisfies the following elementary properties: 
If E C F are two different subsets of RT, then 

(8.1) distH(E,F) = sup dist(x,E) = sup dist(x,E) = sup dist(x,OE). 
xEF xEF\E xEF\E 

If A- C El F C A+, then 

(8.2) distH (OE, OF) < max { distH(A-, A+), distH(R' \ A-, RT \ A+)}. 

In fact, if x E OF \ E, then 

dist(x,OE) = dist(x,E) < dist(x,A-) < distH(A-,A+). 

If x E OFnE, then 

dist(x, OE) = dist(x, Rn \ E) < dist(x, Rn \ A+) < distH(R n \ A-, RTn \ A+). 

This reasoning can then be repeated, with the roles of E and F interchanged. 
From now on we shall denote by C a positive constant, different from time to 

time and independent of c. 

Theorem 8.1. Assume the regularity assumptions (2.1) and either OQ E W3 ? 
(i.e., d E W3 oo(-E)) org compactly supported in Q. Given a nondegenerate relative 
minimizer A cc Q of.., -there exist a solution ue of (3.2), a constant C independent 
of c but possibly depending on Q, g, A (in particular on A1), and a constant co > 0 
such that 

distH(Z,ZE) ? Cc2jlogc|2, Vc < 60, 

where E = OA and Se = {ue = 0}. 

Proof. Existence of uE is established in ?7.4. Set A- = {-(dyE) - Cic > 0}, A+ = 

{y(-e ) + Cie > 0}, Ae = {ue > 0}. Choosing Ci sufficiently large (independent 
of e), we clearly have -y(d-E) - Cc < v- and OY-) + Cie > v+. Hence, A- C 
A, AE C A+, and we can use (8.2). Now, for c sufficiently small, A+ \ A- C T, and 
we can conclude that distH (A-, A+) I distH (RT \ A- I Rn \ A+) < Ce2l log c12. To 
see this, we argue as follows. Fix x E A+ \ A-. We have -Y(-E ) + Cic > 0 and 

- Cie < 0, which imply 

d+ > -c-j1 (Cic) > -2C, c2, d- < 2C0162. 

Define y = x + ce21 log e12Vd with C > 3CI + 2Clhmax. From the properties of the 
distance function and the definition of d- and d+ we clearly have s(x) = s(y), and 
we readily get d-(y) = d+(y) - 2cih(x)c2 log c12 > de+ (x) + 3C162 > 2C162. This 
implies dJ(v) > 2C16, which gives y E A-, since 'y(2Cic) > C1e for 6 sufficiently 
small. Since dist(xIy) = C021 log 612, we get the result, using (8.1). D 
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9. OPTIMALITY 

Optimality of the quadratic rate of convergence expressed in Theorem 8.1 can 
be formally shown by examining the very special case of a circular minimizer, and 
using formal asymptotics. 

Take n = 2, and select a radially symmetric forcing term g of the special form 

g(r) = ar2 +,Br +1- a -, 

where r = lxi is the distance from the origin. Since g(1) = 1, the circle A = {r < 1} 
is a stationary point for the functional F in (3.1). It is not difficult to verify that 
this circle is the unique absolute minimizer of Y for all (a, /B) in some neighborhood 
of (0, -4). 

If we express (3.2) for radial symmetry, we obtain for the solution uE = u,(r) 
the equation 

(9.1) I + II + III + IV :=-2 ru" -&2u' + rI(u)- --erg(r) = 0. 
2 

We shall denote by q, a root of uE(r), i.e., uEQE) = 0, which corresponds to the 
radius of the approximating circle Y,. Set $E = 1 + ,. 

If we suppose by contradiction that the error between E and SE is more than 
quadratic in c, we should have 

(Je = O(f 2)' 

Finally, we introduce the stretched variable y = e-1(4, - r), and the stretched 
solution within the transition interval, 

UE(y) = UE(?E - Cy) 

We now intend to develop an accurate formal asymptotic expansion for UE and 
consider all the terms of order > O(c3). Expand U, as follows: 

(9.2) UE = Uo + eUl + e2U2 ? c3U3 + 0(e3). 

Since U,(0) = 0, we get the conditions 

(9.3) Uj(0) = 0, i = 0, ... ,3. 

We clearly have 

(9.4) r = -ey + aE, 

(9.5) u= -UE 

(9.6) U =2 

(9.7) g(r) = 1 - e(2a + 1)y + e2ay2 + o(c2), 

10(Ue) = O(U0) + (UE - Uo)10(Uo) + 2(u 0) 

2 
+ 6 (UE - U)3g"/(U0) + o(c3) 

(9.8) = ~p(Uo) + 3 U 1 '(Uo) + U 2 (u2+'(Uo) + 2U3 4"'(Uo)) 

+ &3 (U3?/(Uo) + UiU2+."(Uo) + 0U?iVY"(Uo)) + 0(e3). 
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We can now use these relations to obtain the expansions for each term in (9.1). 
Using (9.2), (9.4), and (9.6), we get 

(9 9) I=-c2(1 - EY + Se) 2 (Uo; +? EUl, +? 2U2 ? 3U3, ? o(e3)) 

=-Uoj + 2(yU'- I) + c2(yUJ -_ U+) - U ? c3(YU,, + 0(E3). 

Using (9.2) and (9.5), we get 

(9.10) II =-e2 (--(U0 ?Ul + 2U + ?o(e2))) = EU6 + E2UJ +?E3U + ?o(e3). 

Using (9.2), (9.4), and (9.8), we get 

III= (1 -Cyy + j)/(UE) 

(9.11) +(U0) ?c(Ui'(Uo) -y40(Uo)) +E2 (U21'(Uo) ? 2 (Uo)-YUi?L(Uo)) 
3) (TTII(T7TT,I(T\73,III(T\ +T4.(7U12,0.rr2) Y, )I I(rTO) (9.11) 

2 

+ 3 (U3 01(U ) + UlU2 f t' ( Uo + U U13f ' U -U 'U )- 12 y ll (U0 + 6 ~~~~~~~~ 
+ 3(c3) + C0,j?(Uo). 

Using (9.4) and (9.7), we get 

Iv 
CO 
2?l 6-Ey + rE) (1-6(2Oa +3)y + ?2 ay2 + o(62)) 

(9.12) 2 
(9.12)~ ~ C = 0( + e2 y(2a/ + 13 + 1) - dy2(3a +/3)) + o(e3). 

We now collect all terms of equal order in (9.9), (9.10), (9.11), (9.12) and equate 
them to zero. 

9.1. Order 0(1). Not surprisingly, the 0(1) terms from (9.9),(9.11), together 
with condition (9.3), force the choice Uo = wy. This also fortunately cancels out the 
two terms with UE in the same two expressions for I and III. 

9.2. Order 0(7e). After cancelling two terms, we get the equation for Ul, recalling 
(6.1), 

AU1 a Co 

whence, as expected, U1 = q 

9.3. Order 0(cE2). We get 

AU2 = YAU1 + r' + 72 Z;(0 ) + COy(2 + 1 + 1) 2 -2-y2 3l 

7' + !r2+IIt) + yY + y(2a? +/3). 

This leads to U2 = &(1) + ((2) + ((3) - (2ar + i3)&(4). 
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9.4. Order 0(c3). We are now only interested in terms involving a and 3. All 
terms not depending on a or ,3 will always be denoted by the generic letter f. We 
obtain, recalling that AU2= c2o y(2a + ,) + f, 

AU3 = C2(2a +a3) - (2a + i)(&(4)) - n(2a + /)(4)4/y) - C?y2(3a + ?) + f 
2 2 

- -2 _ (2 a + 3) ((4) Yi+ T(4 )) + f = faj . 

The solvability condition for this self-adjoint equation (see, e.g., [3]) implies 

(9.13) JfR ' = ol 

and this has to be true for all (av, ,) in a neighborhood of (0, -4); hence, by differ- 
entiating (9.13) with respect to av, keeping 2ac + 1 fixed, we get 

co 2 | /y=0 

but this is not possible, since -y' > 0, and we get a contradiction. This proves that 
the error between E and Se cannot in general be better than 0(c2), and that our 
main result is quasi-optimal. 

10. THE DISCRETE PROBLEM 

Using conforming piecewise linear finite elements, we shall now introduce a dis- 
cretized version of problem (3.2)-(3.3) equivalent to a system of nonlinear equations, 
which can be numerically solved, employing appropriate iterative schemes. 

We shall prove, under appropriate restrictions on the mesh size (h2 = o(c5)) a 
discrete counterpart of Theorem 8.1, e.g., that the boundary FD of the nondegenerate 
minimizer A CC Q can be approximated with an (9(c21 log 612) error by a solution 
of the discretized problem. 

10.1. Notations and assumptions. For the sake of simplicity we shall assume Q 
to be a convex polyhedral domain in Rn. Since this implies that &Q is not regular, 
we shall require g to be compactly supported in Q. 

For any h > 0 (meshsize) let {Sh}h be a family of finite element partitions of 
Q into simplices having diameter bounded by h and satisfying the minimum-angle 
regularity assumption [10]. It is not restrictive to assume Q = UTEsh T. Denote by 
gh = {Ni}i I the set of all vertices of the mesh and suppose that .Vho/{NJ} 11 
I < J, are the internal vertices. 

For the main result of this section we also require the following regularity as- 
sumption on Sh: 

There exists a constant C independent of h such that for any tetrahedron 

(A) T E Sh the projection of any vertex lies inside the opposite face and has 

distance bigger than Ch from the boundary of the opposite face. 

In dimension n = 2, assumpion (A) can be replaced by the less restrictive require- 
ment: 

There exists a constant C independent of h such that for any pair 

(A*) of adjacent triangles T1, T2 E Sh the sum of the opposite angles 

does not exceedir - C. 
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Assumption (A) (respectively (A*) in dimension n = 2) is a stronger version of the 
acuteness property of meshes (respectively quasi-acuteness), and implies a discrete 
version of the comparison principle for the discrete operator without mass lumping 
(Lemma 10.1). 

We shall denote by Vh the space of globally continuous piecewise linear functions 
over Sh, and denote Vho := Vh n Ho (Q) = {v E Vh : vla& = 0}. Let qj E Vh denote 
the usual hat function associated with the node Nj, j = 1,...,J. The functions 
q3, j = 1, ..., J form the standard canonical basis for the finite element space Vh. 
Note that the subset {di} is a basis for Vho C Vh. Finally, Ih: Co(Q) -* Vh will 
denote the usual Lagrange interpolation operator, and 11h the elliptic projection of 
any v E H1(Q) onto Vh defined by 

(10.1) (Vv, Vq) = (V(Ilhv), Vq), V E Vho, lhV = IhV on OQ. 

Denote by M = (mij) and by A (ai ) the mass and stiffness matrices, defined by 

Mij = | i Oj dx, aij = o | - Voj dx, i = 1, ...,I,I j i=1,...,J. 

It follows by direct computation that for meshes satisfying assumption (A), or (A*) 
if n = 2, we have 

(10.2) -a-j > Ch-2m,j > 0, i= 1,...,I, j = 1,...,J, ij, 

where C denotes here and below some positive constant independent of h and c, 
possibly different from line to line. 

The discrete version of problem (3.2)-(3.3) can be written in variational form as 

find v E Kh such that 

(L(h)(v),q) :e(Vv,Vq) + (Igi(v), q)-C - (g, q)h = 0i , O E Vh 2 

where (,.) denotes the L2(Q) scalar product, (g, /)Dh f: Ih(go) corresponds to 
the use of the vertex quadrature rule to approximate the integral, and Kh := Iv E 

Vh: V|0Q = -1}- 

10.2. Discrete barriers. We can prove the following lemma. 

Lemma 10.1. Suppose that Sh satisfies assumption (A) or (A*). Let v, w E Vh 
with v < w, and v(Ni) = w(Ni) for some internal node Ni E, ,h. Then 

(Lh(V), 07-) > (Lh(W), Oi) 

if h = o(c) and c is sufficiently small. 

Proof. Let vj and wj, j = 1,..., J, denote the nodal values of v and w, and LV, 
the Lipschitz constant of fb restricted to [-2,2]. The equality vi = wi implies 
Ih [(v)] (Ni) = Ih[f/(w)](Ni), whence 

(Lh(W) - 
Lh(V), 

Q) =2 E aj (wj - Vj) +E mij (fp(wj) - 
(Vj)) 

j74i i?i 

< [c2aij(wj -vj) +mijLV,(w-vj)] < 0 

j?i 

thanks to property (10.2) and the fact that h = o(c) (j ranges from 1 to J in all 
summations). LI 
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Based on Lemma 10.1, we can now prove the following discrete version of Lemma 
5.1. 

Lemma 10.2 (Discrete Comparison Lemma). Assume Sh satisfies assumption (A) 
or (A*). Suppose v-, v+ E Kh with v- < v+, and (Lh(V-), q) < 0, (Lh(V+), q) > 0 

for all 0 < X E Vho (i.e., v- and v+ are respectively a discrete subsolution and a 
discrete supersolution). Then there exists u E Kh, v- < u < v+ a solution of the 
discrete problem (10.3). 

Proof. For this proof, which is based on a fixed point argument, we shall identify 
any function v E Kh with the vector in RI of internal nodal values vi = v(Ni), 
i = 1, ...,II. 

Introduce Q C RI to be the closed convex set Q = {v E Kh: V- < V < v+}, 
define the continuous map F: RI -RI as 

Fi (V) = (Lh (V),Oi), Vv E- Kh, i = 1, ...,II, 

and finally the map T: Q -* Q by 

T(v) = PQ(V -F(V)), 

where PQ: RI Q is the componentwise projection on Q. 
By the Browder fixed point theorem there exists a fixed point u E Q for the 

map T. The vector u represents a function (again denoted by u) in Kh satisfying 
v- < u < v+. It remains to prove that u solves problem (10.3), which is equivalent 
to showing that F(u) = 0. 

Let w = u - F(u). We claim that w E Q. This would imply the result, since in 
this case PQ(W) = w, which gives u = T(u) = w and hence F(u) = 0. 

To see that w E Q, suppose by contradiction that wi < v- at some node 1 < i < I 
(the proof is similar if wi > vi). Since u = PQ(w), we have ui = v-, and we can 
apply Lemma 10.1 to the functions v- < u E Kh, obtaining 

(Ch(V ), X i) > (Ch(U), Xi)- 

This, in conjunction with the fact that v- is a subsolution implies that Fi(u) = 

(4h(u), qi) < 0, hence wi = ui -Fi(u) > ui = vi, which contradicts the assumption 
on wi. ? 

By using the continuous barriers constructed in ?7, by means of the elliptic 
projection defined in (10.1), we now define the discrete barriers as 

(10.4) Veh = Hh(VJ), V+h - Ih(vWE) 

Lemma 10.3 (L? stability and error estimate). Suppose h2 1log,h = 0(62); then 
the discrete barrier Veh satisfies the following stability estimates: 

(10.5) 11VE,hHILo(Q) < 2, I|VV7hILoo(Q) < ? 

for sufficiently small e and h. Moreover, the following L? (Q) error estimate holds: 

(10.6) live -Veh| Lo() < Ch21 logh lID2vJLo(Q) < C- I loghl 

Similar estimates are valid for V+h. 
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Proof. The first inequality in (10.6) has been proved by Nitsche [26] and Scott [35] 
for the elliptic projection; ID2vj IIL??(Q) < C62 follows from the construction of 
vJ. We also have the following W1"? stability estimate (Rannacher, Scott [34]): 

||VVh||IL?(Q) < C11VV||L??(Q)X 

which immediately gives the second stability estimate in (10.5) in view of the con- 
struction of the continuous barrier vJ. Finally, the first estimate in (10.5) follows 
from (10.6), the hypothesis on h, and the L' bound I ILoc, )?2clearlyvalid 
forE esmall enough. E 

Using Lemma 10.3, we are in a position to prove that v-h is a discrete subsolu- 
tion. 

Theorem 10.1. Under the following restriction on h, 

(10.7) h = ((E5/2) 

the discrete function VJh is a discrete subsolution, i.e., (Ch(vJh), ) < 0 for all 
0 < E E V?. 

Proof. We decompose (4h(Vj,h), q) as follows: 

(ICh(V7,h)7 ,) = (C(V )) + [(Ih'C(VCJh) ) - h 

? [(ip(VJh),) (Ve 

?CO - [(g,$) - (9,4)h] =: JJ+I III+?IV. 

From ??7.1, 7.2, 7.3, we have I < -Cc31 log62 Hq$L1(Q). Let Lp, be the Lipschitz 
constant of O'p restricted to [-2, 2]. Using standard properties of the interpolation 
operator Ih, in conjunction with (10.5), we can estimate 

JJI| ? ||Ih?'V)(VeXh) - /b(VJ,h)||LO(Q)||q$||L1(Q) ? 
Chh TmEaS( 

glD 
f1(v7 )||LC2(T)mHID 2 

~~~~~~ ?~~~~~~~~ < Ch 2LO, II Vv- 112 .(Q)IIOIL1(Q) < C 2IIOIIL1(Q)- 

Using (10.6), we have 

|III| < 110(VeJh) - O(V) Loo(Q) q$|L1(Q) < L+pHVJh-Ve L(Q)II$HL1(Q) 

< C-I21loghlHlO$L1(Q?). 

Finally, in view of the regularity of g and the inverse inequality IIVqIIL1(T) < 

c IJOIIL1(T), for any T E Sh, where hT is the diameter of T, the quadrature error 

can be bounded as follows: 

JIVI < CE E h D2(gD )|2L((T) 
TESh 

<CE E hT [IIVgIIL(Q)IIVqIIL1(T) + |IDg2|LO(Q)||q$|L1(T)] 
TESh 

? CEh,jO'IL1(Q). 
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The terms II and III can be controlled by term I if we require 

-.I log hl =(,(l I log c12), 
d 

which is seen true by using (10.7). Term I also controls IV, as can be seen by 
exploiting (10.7). D 

10.3. The discrete solution. The discrete barriers v-h, V+h defined in (10.4) 
cannot be directly employed in Lemma 10.2, since they do not belong to the affine 
space Kh. We can however simply modify, e.g., v-h by raising the value on the 
boundary nodes to be -1. After this modification V-h is a fortiori a subsolution 
(apply Lemma 10.1 to the original and the modified v-h). 

The requirement v-h < v+ is a consequence of the fact that v+ - v- > 
CE 31 log c12 (direct verification) by using the error estimate (10.6) and the relation 
(10.7). 

We can finally apply Lemma 10.2 to get a solution v-h ?u+,h ? V+ of problem 
(10.3). 

10.4. Discrete interface error estimate. The constructed discrete barriers v-h 

and ve+h allow us to prove a discrete equivalent of Theorem 8.1 for the Hausdorff 
distance between the exact prescribed curvature surface E and the discrete surface 
defined by ZE,h := {U,,h = 0}. 

Theorem 10.2. Under the hypotheses of Theorem 8.1, with g compactly supported 
in Q, and under the assumption (A) or (A*) for the mesh Sh and the relation (10.7) 
between the relaxation parameter e and the mesh size h, there exist a constant C 
independent of e and so > 0 such that 

distH(E,XEE,h) < C621log612, V'e < so. 

Proof. Sticking with the notation of Theorem 8.1, we claim that A- {VC h ? 0} 
C {v+h > 0} C A+. This will immediately imply the result, thanks to property 
(8.2) of the Hausdorff distance and the relation v-h ? U +,h ? V+h. 

To prove the claim, simply observe that 

V ,h(X) > ve (x)- IVe h -Vj ILoo(Q) 

> -Ye ))2,EjjgjjLO(Q)j1|qjjLO(Q) C I lloghl, 

(d-(x)) 

where we used definition (7.2) of v-, estimate (10.6) and assumption (10.7). In 
view of the definition of A- with C, large enough we get the first inclusion. The 
second one follows similarly. E 

11. A NUMERICAL SIMULATION 

For the sake of completeness we present a numerical simulation included in [5] 
for the solution of a prescribed curvature problem. 

Set Q = (-4, 4) x (-4, 4) and take g(x) --lxl +?5/2; then A = {x E Q: lxl < 2} 
is a nondegenerate absolute minimizer of F as defined in (3.1). 
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V t. I~~~~~~ 

FIGURE 11.1. Exact solution (dashed line) and discrete solution 
(solid line) 

We discretize Q with a uniform unstructured triangular mesh of size h = 0.1, fix 
e = 0.17 and solve the discrete problem (10.3) with the addition of a mass lumping 
on the nonlinear term involving Vb (see Conclusions, ?12) by using a nonlinear Jacobi 
iteration scheme. We enforce the symmetry of the problem by solving (10.3) on the 
quadrant (0,4) x (0,4) with homogeneous Neumann boundary conditions on the 
coordinate axes. The exact solution AA and the computed solution ZE,h are shown 
in Figure 11.1. 

12. CONCLUSIONS 

The boundary &Q and the choice of the boundary condition for problem (3.2) 
plays an important role in Theorem 8.1. Other different boundary conditions such 
as homogeneous Neumann or general Dirichlet conditions could however be con- 
sidered with only slight changes in the proofs, if we keep requiring the relative 
compactness of the minimizer A cc Q. 

It seems not at all trivial to relaxAthis compactness assumption, unless spe- 
cific choices for the boundary condition (Homogeneous Neumann) and on &Q (e.g. 
planar where E intersects 9Q) are taken. The most interesting case of a general 
Dirichlet boundary condition, which leads to prescribed contact angle for the min- 
imizer to 9Q, seems to require a precise construction of the subsolution in the 
neighborhood of the contact set Z n &Q. Moreover, the definition of nondegenerate 
minimizer has to be reformulated, since now the manifold E n Q has a boundary. 

The discrete problem formulated in (10.3) does not include mass lumping for 
the reaction term ?b(v), as was done in [4], [5], leading to a nondiagonal mass 
matrix in the resulting nonlinear system. Indeed, the use of mass lumping can 
only be taken into account by a stricter restriction h = 0(i4), since the difference 
V = (IhhI(V7,h), q$)h - (Ih'04(V6h) IO) now arising in the proof of Theorem 10.1 can 
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be bounded by 

IVI < C E ( hT VC(h)jLOO(Q)jjVqjHL1(T) 
< 

Ch IIOIIL1(0) 

TESh 

and can be controlled by term I if h = O(E4). 
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